
Scalability Design Patterns
Kanwardeep Singh Ahluwalia

81-A Punjabi Bagh
Patiala - 147001

India
+91 9811016337

kanwardeep@gmail.com

ABSTRACT
This paper presents a pattern language that can be used to make
a system highly scalable. This pattern language applies to
software systems which need to scale. The pattern language
addresses this problem by introducing patterns those touch upon
introduction of parallelism to even optimization of algorithms
and hardware.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes,
Reliability, availability, and serviceability.

General Terms
Algorithms, Management, Performance, Design, Reliability.

Keywords
Scalability, Parallelism, Algorithm, Multi-thread, Multi-process,
Automate, Decentralization, Performance.

1. INTRODUCTION
Scalability is a desirable property of a system, a network, or

a process, that indicates its ability to either handle growing
amounts of work in a graceful manner, or to be readily enlarged.
For example, it can refer to the capability of a system to increase
total throughput under an increased load when resources, e.g.
hardware are added.

There are various ways to make a system scalable – some of
these ways are driven by the domain to which the system
belongs. For example, scientific computing systems may stress
faster algorithms. Similarly, a system involving complex
calculation may stress faster hardware. On the other hand, a web-
based application may just opt for a cluster of low or medium end
machines.

Scalability has been an area of concern for many years and
the approach to achieve scalability has been changing. More
affordable and abundant hardware has made it possible to focus
on adding hardware as one of the simplest ways to enhance
scalability, while two decades ago, the focus used to be on faster
algorithms, to save the cost of highly priced hardware.

There have also been different perceptions on measuring
scalability. In a transaction-oriented system, some would dictate
scalability requirements in terms of the maximum number of
simultaneous users supported by the system. Others would prefer
to dictate the maximum transactions processed per unit of time.
For example, a requirement could say that the system initially
should be able to support 50 simultaneous users, but it should be
scalable enough to support up to 500 simultaneous users.

Figure 1 illustrates a way of measuring the scalability of a
system; a graph is plotted with load (in terms of simultaneous
users) on the X-axis and throughput (in terms of transactions per
unit of time) on the Y-axis. As shown in the figure, the
throughput of the system usually increases initially as the system
is exposed to an increasing load. After a certain point the
throughput of the system remains constant for a while, even
when subjected to an increased load. However, if the load keeps
on increasing, then a point comes after which the throughput of
the system starts decreasing. This point is usually known as “cliff
point”. This may happen for many reasons, e.g. the system may
feel the scarcity of hardware resources, or the system may be
experiencing a lot of locking issues which increases the overhead
and hence the net throughput decreases. The system may even
fail if the load is increased beyond ‘A’. Hence, the system is
scalable enough only to support ‘A’ simultaneous users.

Load

Th
ro

ug
hp

ut

X
Cliff X

Cliff'

A A'

Figure 1: Measuring Scalability

Figure 2 shows system behavior under increasing load after
it has been made more scalable, for instance, by adding more
processors to the existing hardware. The following figure shows

©Copyright is held by the author(s).

that the system is now able to handle more input load. The ‘cliff
point’ A’ has drifted further.

Load

Th
ro

ug
hp

ut

X
Cliff

Figure 2: Comparing Scalability

There is a general perception that a system can scale proportional
to the hardware added to the system. This perception might not
be generally true as has been proved by Amdahl’s Law. For
example, suppose we can improve 70% of a module by
parallelizing it, and run it on four CPUs instead of one. If • is the
fraction of a calculation that is sequential and 1 • • is the
fraction that can be parallelized, then the maximum speedup that
can be achieved by using P processors is given according to

Amdahl's Law: . Substituting the values for this example, we

get . If we double the computing power to 8

processors we get . Doubling the processing power
has only improved the speedup by roughly one-fifth. If the whole
problem was parallelizable, we would, of course, expect the
speed up to double also. Therefore, throwing in more hardware is
not necessarily the optimal approach.

The patterns in this paper address the architectural and
design choices to consider while designing a scalable system.
These patterns are best suited for transaction-oriented systems.
These patterns do not discuss programming techniques that can
be used to implement these patterns. The intended audience
includes system architects and designers who are designing
scalable systems.

2. LANGUAGE MAP
Figure 3 illustrates the relationship between patterns

described in this paper. There are two kinds of relationships
shown in the language map. The first one is a refinement
relationship. The patterns are refined as seen from left to right.

The second kind of relationship shown is a dependency
relationship. This kind of relationship exists between patterns
which are dependent on each other.

Add
Intra-Process
Parallelism

Add Hybrid
Parallelism

Automate
Scalability

Optimize
Algorithm

Add
Hardware

Optimize
De-

Centralization

Control
Shared

Resources

Introduce
Scalability

Add
Parallelism

Add
Inter-Process
Parallelism

Refinement
Relationship

Dependency
Relationship

Figure 3: Scalability Patterns Language Map

3. PATTERNS DESCRIPTION
3.1 Pattern 1: Introduce Scalability
3.1.1 Context

System that does not want to deteriorate its performance
when the load increases.
3.1.2 Problem

How can a system maintain its performance with increasing
input load?
3.1.3 Forces

• System should perform faster so as to do more processing
in lesser time, i.e., able to maintain its processing rate
when load is increased.

• System should make full use of the available resources.

3.1.4 Solution
The system has to be scalable in order to handle increased

load. Many key considerations ranging from application of an
optimized algorithm to having optimum amount of
decentralization avoiding unnecessary bottlenecks; are required
to be made for increased scalability.

Addition of hardware can also result in more resources for
processing in the system, which can scale the system to handle
the increased load.

The system can also make use of parallelism in order to
process the increased load. The parallelism can be introduced
with in the process using threads, or system can make use of
multiple processes, or a mix of both multi-threaded and multi-
processed environment can be used for parallel processing in the
system. Further, the system can be made more intelligent to

adjust the number of parallel processing units i.e. threads or
processes, automatically as per the varying input load.
3.1.5 Resulting Context

The system is able to maintain its throughput with the
increased load, as well as optimized usage of system resources is
ensured.
3.1.6 Known Uses

Application servers like Websphere and Weblogic are
popular for their in-built scalability features, like thread pool for
parallel processing, cluster enabled configuration, ability to scale
with additional hardware.
3.1.7 Related Patterns

Optimize Algorithm
Add Hardware
Introduce Parallelism
Optimize Decentralization
Control Shared Resources

3.2 Pattern 2: Optimize Algorithm
3.2.1 Context

You have decided to Introduce Scalability and the system
can not Add Hardware or Add Parallelism.
3.2.2 Problem

How can a system enhance its throughput without adding
new hardware resources to the system?
3.2.3 Forces
• System should be able to increase its performance without

compromising on the functionality.
• System should be able to maintain its transaction

processing rate.
• System should make full use of the available resources.

3.2.4 Solution
The key to the solution is to identify the areas those can be

optimized for performance when the input load increases. The
aim is to identify tasks that can be completed in a shorter period
to save processing time. This shall result in overall throughput
improvement of the system by allowing the saved CPU time to be
allocated for growing work.

These tasks can in some cases be identified with a code
walkthrough to mark areas where smarter algorithms can help
improving the performance.

If code walkthrough does not help, then certain profiling
tools can be used to identify the areas which are consuming most
of the time during processing. These tools (like IBM Rational
Quantifier) help identifying the areas (functions) that are eating
up most of the CPU time.

After identifying the problem areas in the code, an alternate
algorithm can be used which shall result in keeping the end
result same but complete the task in a shorter duration.
3.2.5 Resulting Context

The system is able to maintain its throughput with the
increased load, as well as optimized usage of system resources is
ensured. However, it may not be always possible or easy to
replace the existing algorithm with more efficient one. In that
case, the user has to look for other options like Adding
Hardware or Parallelism in the system.

3.2.6 Known Uses
Running time of Insertion sort is O (n*n), while that of

Quick sort is O(n lg n). Hence, quick sort scales better with n as
compared to insertion sort as depicted in the Figure 4.

Figure 4 : Comparison of the function of n² and n lg n

Another very well known use of enhancing algorithms is by
using ‘join’ in the SQL statements rather than having ‘inner’
query. ‘Inner’ query is less scalable as compared to the ‘join’
query, because ‘inner’ query results in loading of all the data
satisfied by the ‘inner’ query and then other conditions are
looked up on which are specified in the remaining part of the
query. However, in case of statements using ‘join’, all conditions
can be specified in one ‘where’ clause and there is no need to
look up for unnecessary data; reducing processing time.
3.2.7 Related Patterns

Introduce Scalability
3.3 Pattern 3: Add Hardware
3.3.1 Context

You have decided to Introduce Scalability and the system
can not change the code.
3.3.2 Problem

How can a system entertain increased load without changing
the code?
3.3.3 Forces

• It should be possible to identify the scarce hardware
resources.

• System should be able to maintain its transaction
processing rate with the increased load.

3.3.4 Solution
The key to the solution is to identify the hardware resources

which are becoming scarce for the system.
The scarce hardware resources can be identified by using

resource monitoring tools e.g. prstat/top.
Once the scarce hardware resources are identified, the next

step is to add them in efficient quantity. These scarce resources
can be added to the existing physical node or altogether a new
physical node can be introduced in the system.

Adding hardware to the existing physical creates “vertical
scalability”. Adding hardware as a separate new node creates
enhanced “horizontal scalability”.

3.3.5 Resulting Context
The system is able to maintain its throughput with the

increased load by having additional hardware. Additional
hardware may not always result in the increased scalability for
the systems which have inherent bottlenecks due to bad
algorithms. Such systems should first Optimize Algorithm
before seeking additional hardware resources to enhance
scalability.
3.3.6 Known Uses

Adding RAM to the existing machine incase it is detected
that the system requires more memory.

Adding a separate machine to a cluster if all the existing
machines in the cluster are being utilized to their full capacity.
3.3.7 Related Patterns

Introduce Scalability
3.4 Pattern 4: Introduce Parallelism
3.4.1 Context

You have decided to Introduce Scalability and the system
has the capability to split the work in to pieces that can be
executed simultaneously.
3.4.2 Problem

How can a system maintain its performance with increasing
input load?
3.4.3 Forces

• System should be able to process multiple tasks at the
same time.

• System should be able to maintain its transaction
processing rate with increasing input load.

• System should make full use of the available resources.
• System should be able to decide the level of parallelism to

be introduced versus the complication added by
parallelism.

3.4.4 Solution
The key to a scalable design is to process multiple

transactions in the system simultaneously. The system should do
parallel processing in order to maintain the throughput with the
increasing load.

Divide the work in to tasks that can be done simultaneously
to do more processing in the same time. The longer the task, the
more it improves the scalability. Parallelism will also ensure
optimized usage of system resources such as a CPU.

Further parallelism can be introduced in a way to process
multiple transactions simultaneously as shown in the Figure 5 or
it can also be introduced to process various tasks in a single
transaction simultaneously as shown in the Figure 6. In the first
case, each parallel processing unit is replica of the other as all
such units would be processing similar transactions
simultaneously. In the later case, each parallel processing unit
would be a specialized one and may not be similar to the others.

Time

T1

T2

T3
T4
T5

Figure 5 : Multiple Simultaneous Transactions

Time

T1

Figure 6 : Single transaction split in to multiple parallel

tasks
It is not always easy to introduce parallelism in an existing

system. Hence, parallelism is something which should be
considered at the time of designing a scalable system.

Parallelism can come in different forms as described briefly
below.

• A system can have multiple threads (Intra-process
scalability)

• Or, it can have multiple processes (Inter-process
scalability)

• Or, a system can have mix of both of the above (Hybrid
scalability) in order to process multiple transactions
simultaneously.

3.4.5 Resulting Context
The system is able to maintain its throughput with the

increased load, and ensure optimized usage of system resources
is ensured. The down side of adding parallelism is that it usually
makes a system complex to maintain and debug. A bad design
will make it more prone to defects and can result in losing the
integrity of data. Hence, it is usually not the first choice of many
designers to enhance the scalability of the system.
3.4.6 Known Uses

One of the common examples is the J2EE server
architecture, where in HTTP requests are processed
simultaneously by worker threads as shown in Figure 7.

Figure 7 : Worker threads in an application server

Another well known example is Cluster computing, where
in multiple nodes in the cluster process transactions
simultaneously as shown in Figure 8.

Apache
Load Balancer

Tomcat 1

Tomcat 2

Tomcat 3

Tomcat 4

R equests

Figure 8 : Apache - Tomcat Cluster

Another known use of splitting a single transaction in to
multiple parallel tasks can be found in many applications where
one thread is busy performing disk access while the other thread
is busy performing network access. Both tasks are part of the
same transaction.
3.4.7 Related Patterns

Introduce Scalability
Intra-process Parallelism
Inter-process Parallelism
Hybrid Parallelism

3.5 Pattern 5: Optimize De-centralization
3.5.1 Context

You have decided to Introduce Parallelism and the system
is not able to scale due to bottlenecks (the areas related to
resources those are required by parallel processing paths).
3.5.2 Problem

How can a system do true parallel processing avoiding the
bottlenecks?
3.5.3 Forces
• Centralization can be a bottleneck
• More bottlenecks the system has, less scalable it is
• It’s hard to avoid centralization.

3.5.4 Solution
Design the system to avoid bottlenecks. Bottlenecks should

be avoided by following a decentralized approach, where in
processing is not dependent on a particular resource, instead
multiple resources are provided to make each parallel path
independent enough not to be burden or dependent on the other
paths.

Tools can be used to identify scaling bottlenecks like IBM
Rational Quantify, which lists the graphical display of the
request flow. However, it is not easy to remove bottlenecks. The
most common technique for removing the scaling bottlenecks
involves providing an individual copy of the resource that is
creating the bottleneck to each contender. Other approaches
include minimizing the bottleneck area, so that the impact of
bottleneck is reduced.

It is not possible to completely get rid of centralized
processing. Instead, it may be beneficial in some places,
predicting bottlenecks are hard, but measuring them is easy.
Therefore, take an incremental approach to optimize
decentralization, wherein bottlenecks detected during processing

should be removed and then the system is again observed for
further bottlenecks. This ensures that only centralized processing
areas posing as bottlenecks are removed.
3.5.5 Resulting Context

The system is able to do parallel processing without running
in to scaling bottlenecks. The user needs to be careful while
using this pattern by not removing useful centralizations, which
may break the system logic. Centralization is at times necessary
e.g. even though there are various state governments running the
states, the role of Federal/Central government is important to
bring synergies between these governments.
3.5.6 Known Uses

Apache-Tomcat cluster having multiple Tomcat nodes –
each one of them processing HTTP requests independently.
However, these different instances may be talking to the same
database instance.
3.5.7 Related Patterns

Introduce Parallelism
3.6 Pattern 6: Control Shared Resources
3.6.1 Context

You have decided to Introduce Parallelism and the system
has to access some of the shared resources while doing parallel
processing.
3.6.2 Problem

How system should be able to have parallel processing
without corrupting the shared resources?
3.6.3 Forces

• System should be able to share the resources so as to
execute tasks in parallel.

• System should avoid race conditions and shared resources
should not get corrupted.

3.6.4 Solution
Identify the shared resources in the system and categorize

them as “Access Only” and “Modifiable” resources. Access Only
resources should not be a problem while they are accessed by
different nodes during parallel processing. Special care has to be
taken for Modifiable shared resources to maintain their integrity
while they are being modified by multiple nodes simultaneously.

Special care has to be taken to prevent the corruption of a
shared resource in a scenario where one parallel processing unit
is trying to read a Modifiable resource and while another parallel
processing unit is trying to modify the same resource. The most
common way to prevent the corruption of shared resources is to
acquire a lock on the shared resource, modify it, and release the
lock. This ensures that the shared resource is being modified by
only one parallel processing unit at a time.

Using locks is not as trivial as it sounds. Locks should be
carefully used to avoid deadlocks that may occur due to following
conditions.

- A parallel processing unit already holds the lock and
requests the same lock again.

- Two or more parallel processing units form a circular
chain where each waits for a lock held by the next in
the chain.

These deadlocks are hard to detect. An in-depth code
walkthrough or tools like Sun Studio Thread Analyzer can detect
thread locks.
3.6.5 Resulting Context

The system is able to access its shared resources without
corrupting them while doing parallel processing. However, as
discussed above the shared resources have to be accessed
carefully so as to avoid their corruption and deadlock conditions.
3.6.6 Known Uses

A global data structure to be modified by the multiple
threads in the system is usually accessed via a Mutex lock.
3.6.7 Related Patterns

Introduce Scalability
3.7 Pattern 7: Add Intra-process parallelism
3.7.1 Context

You have decided to Introduce Parallelism and the system
has only one process available to handle the increasing input
load.
3.7.2 Problem

How can a system be able to execute tasks in parallel when
there is only one process in the system?
3.7.3 Forces
• Single process should be able to exploit parallelism to

handle the increased load.
• The single process should make optimized usage of

hardware resources to handle the increased load.
• System should be able to decide the level of parallelism to

be introduced versus the complication added by
parallelism.

3.7.4 Solution
Use threads to do the parallel processing. For most of the

existing operating systems, these threads would compete for the
hardware resources allocation in the same way as processes do.
Multi-threading will allow the process to make use of multiple
cores, CPUs and/or hyperthreading. This will ensure that even
through there is a single process in the system; it is able to
increase its proportionate usage of hardware resources to handle
increases in input load.

Multi-threading will also allow the system overlap various
tasks independent of each other, e.g. one thread can communicate
with the disk while the other thread can communicate with the
network. Multi-threading also allows overlapping a CPU-
intensive task with a non-CPU intensive task. One thread could
be receiving data from the network while the other could be
parsing the already received data.

Figure 9 shows a process with a single thread on the left
hand side of the dotted line accessing only one CPU at a time;
whereas the process with Intra-process parallelism is shown on
the right hand side of the dotted line with multiple threads
accessing more than one CPU at a time.

The threads in a process can be part of a thread pool that has
configurable number of threads depending on the level of
scalability requirements.

Figure 9 : Display of Intra-Process Parallelism

3.7.5 Resulting Context

The system is able to do parallel processing even from with
in a single process by making use of threads. Threads add
complexity to the system. It is difficult to maintain and debug a
multi-threaded system. Hence, they should be used with care and
only if required. Also, adding a large number of threads in a
process may not result in an increased scalability, as the
overhead of locking and synchronization to access shared
resources may surpass the benefit of adding more threads to the
system.
3.7.6 Known Uses

A servlet container like Tomcat makes use of multiple
threads to bring scalability.
3.7.7 Related Patterns

Automate Scalability
3.8 Pattern 8: Add Inter-process parallelism
3.8.1 Context

You have decided to Introduce Parallelism and the system
can not scale using Intra-process parallelism.
3.8.2 Problem

How will a system handle the increased load when it can not
spawn multiple threads with in a process?
3.8.3 Forces

• The system should make optimized usage of hardware
resources to handle the increased load.

• The system needs to have collaboration between various
processes.

• System should be able to decide the level of parallelism to
be introduced versus the complication added by
parallelism.

3.8.4 Solution
Replicate processes by spawning multiple instances. All

multiple instances need to coordinate with each other to handle
the load in a distributed manner. These processes can coordinate
with each other with the help of a load balancer that helps in
assigning the task to each process.

The structure is shown below in the Figure 10. On the left
hand side of the dotted line is a single process for handling entire
load sent from the client. On the right hand side is a system with
multiple processes to handle the load. A load balancer loads the
multiple processes in the system. The client is not aware of the
multiple processes in the system, but definitely enjoys the
enhanced scalability.

Figure 10 : Effect of introducing Inter Process

Parallelism

Each process instance can handle each transaction

independently or each transaction can be simultaneously
processed by multiple processes. If a process handles transactions
independently, then each process is replica of the other. If a
transaction has to be processed by multiple processes, then each
process is a specialized process providing a specific functionality.
3.8.5 Resulting Context

The system is now able to handle the increased load by
spawning its multiple processes without compromising on the
throughput. However, having too many processes may not make
the system more scalable, because the overhead introduced due
to coordination between the processes may takeover the gain
from having multiple processes. Hence, the system should only
introduce an optimum number of processes. This optimum
number can be determined by increasing the number of processes
gradually and then observing the gain in the scalability.
3.8.6 Known Uses

The Apache-Tomcat cluster is an example of having
multiple identical Tomcat processes working together to provide
inter-process parallelism.

Another example of a transaction being processed by
multiple clients comes from a centralized logger used in most of
the enterprise applications as shown in Figure 11. Logging
required by all the transactions is provided by a centralized
process which talks to other processes through an asynchronous
message queue like JMS. Here the main processes delegate the
logging to a centralized logger without waiting for actual logging
to happen, these processes move on to process the remaining
transaction.

Process 3Process 4

Process 2

Logger

Process 1
Log

LogLog

Log

Figure 11 : Centralized Logger

3.8.7 Related Patterns
Automate Scalability

3.9 Pattern 9: Add Hybrid parallelism
3.9.1 Context

You have decided to Introduce Parallelism and the system
is capable of being both multi-threaded and multi-processed.

3.9.2 Problem
How should a system handle the increased load when it can

spawn both threads and processes?
3.9.3 Forces

• System should be able to decide the level of parallelism to
be introduced by multiple threads as well as processes
versus the complication added by each of these
parallelisms.

• System can gain by having multi-threaded processes.
• There is a limit to which a process can handle the

increased load by adding threads, as after a certain point,
the overhead of concurrency takes over the benefit of
parallelism provided by multi-threading.

• System can gain by having multiple processes.
• There is a limit to which a system can gain by increasing

number of processes.

3.9.4 Solution
Spawn multiple process instances as specified in the pattern

“Inter-process Parallelism” after a process is not able to scale by
increasing the number of threads as specified in “Intra-process
Parallelism”. This is depicted in Figure 12.

Figure 12 : Hybrid Parallelism

The number of processes can increase depending up on the
input load. All these multiple instances need to coordinate with
each other to handle the load in a distributed manner. This
coordination can happen with the help of a Load balancer.
3.9.5 Resulting Context

The system is now able to handle the increased load by
following a hybrid approach both by increasing number of
threads and number of processes without compromising on the
throughput.
3.9.6 Known Uses

In a typical J2EE based application cluster, there are
number of application container processes. Each of these
processes has in turn number of threads for simultaneous load
processing.
3.9.7 Related Patterns

Automate Scalability
3.10 Pattern 10: Automate Scalability
3.10.1 Context

System using Intra, Inter or Hybrid Parallelism with a lot of
varying and unpredictable load.
3.10.2 Problem

How can the system automatically scale up or down to
handle the increased or decreased load?

3.10.3 Forces
• System should be able to detect that with the given

configuration it is not possible to handle the increased
load.

• System should be able to automatically define the amount
(number of threads and processes) by which it has to scale.

• The automation may add to the complexity in the system.
Hence, the benefit of automation should be weighed
against the complexity added by the automation.

3.10.4 Solution
Use a monitoring entity that measures the current

throughput with the ability to increase or decrease the number of
threads or processes in the system.

When the monitoring entity detects that the transactions rate
is dropping and nearing the minimum pre-configured throughput,
then it should gradually increase the number of threads in the
thread pool (in the Intra or Hybrid parallel system) or the number
of processes (in the Inter or Hybrid parallel system). This should
increase the transaction rate. The number of threads or processes
should not be increased once the system increases its throughput
to the desired rate.

Additionally, the monitoring entity should decrease the
number of processes or threads when it observes that the input
load is decreasing. This can be done by having threads with an
idle time-out period after which they should die; if the load on
the system decreases. Similarly, the monitor may decide to kill
the processes in excess in a Last in First out (LIFO) manner.
3.10.5 Resulting Context

The system is able to dynamically adjust its number of
threads and processes in order to handle the increased load with
the same throughout.

3.10.6 Known Uses
In a typical J2EE based application cluster, there are

number of application container processes. Each of these
processes has in turn number of threads for simultaneous load
processing.
3.10.7 Related Patterns

Intra Process Parallelism
Inter Process Parallelism
Hybrid Parallelism

4. ACKNOWLEDGMENTS
I would like to thank Berna Massingill for her feedback and

encouragement during shepherding of these patterns. She has
been very kind to provide in-depth suggestions and comments on
these patterns.

Credit also goes to the participants of writer’s workshop at
PLoP’07 who gave very useful comments.

5. REFERENCES
[1] D.H. Brown Associates, Inc. 2004. Vertical and Horizontal

Scalability.
http://www.sun.com/servers/wp/docs/dhbrown.scalability.fin
al.4.2004.pdf

[2] Hye Eun, Lim. Sort Comparisons at http://www-
users.cs.umn.edu/~hylim/prj1.pdf

[3] The Apache Software Foundation. Clustering/Session
Replication HOW-TO. http://tomcat.apache.org/tomcat-5.5-
doc/cluster-howto.html

[4] Xian-He Sun Rover, D.T. Scalability of parallel algorithm-
machine combinations.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=285
606&fromcon

